Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Brain Stimul ; 17(1): 125-133, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38266773

RESUMO

BACKGROUND: Deep brain stimulation (DBS) is an invasive treatment option for patients with Parkinson's disease. Recently, adaptive DBS (aDBS) systems have been developed, which adjust stimulation timing and amplitude in real-time. However, it is unknown how changes in parameters, movement states and the controllability of subthalamic beta activity affect aDBS performance. OBJECTIVE: To characterize how parameter choice, movement state and controllability interactively affect the electrophysiological and behavioral response to single threshold aDBS. METHODS: We recorded subthalamic local field potentials in 12 patients with Parkinson's disease receiving single threshold aDBS in the acute post-operative state. We investigated changes in two aDBS parameters: the onset time and the smoothing of real-time beta power. Electrophysiological patterns and motor performance were assessed while patients were at rest and during a simple motor task. We further studied the impact of controllability on aDBS performance by comparing patients with and without beta power modulation during continuous stimulation. RESULTS: Our findings reveal that changes in the onset time control the extent of beta power suppression achievable with single threshold adaptive stimulation during rest. Behavioral data indicate that only specific parameter combinations yield a beneficial effect of single threshold aDBS. During movement, action induced beta power suppression reduces the responsivity of the closed loop algorithm. We further demonstrate that controllability of beta power is a prerequisite for effective parameter dependent modulation of subthalamic beta activity. CONCLUSION: Our results highlight the interaction between single threshold aDBS parameter selection, movement state and controllability in driving subthalamic beta activity and motor performance. By this means, we identify directions for the further development of closed-loop DBS algorithms.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Estimulação Encefálica Profunda/métodos , Movimento/fisiologia , Fenômenos Eletrofisiológicos
2.
Clin Neurophysiol ; 140: 171-180, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35659821

RESUMO

Deep brain stimulation (DBS) offers the unique opportunity to record human neural population activity as multiunit activity and local field potentials (LFP) directly from the target area in the depth of the brain. This has led to important discoveries through characterization of pathological activity patterns and identification of motor and cognitive correlates of basal ganglia function in patients with movement disorders. These findings have been covered extensively in a large body of literature, but the technical aspects of microelectrode and LFP recordings in DBS patients are rarely reported. This review summarizes the experience from invasive neurophysiology experiments in over 500 DBS cases in the last 20 years in a single centre. It introduces the basics of intraoperative microelectrode recordings, discusses the neurophysiological and technical aspects of LFP signals and gives and outlook on current and next-generation developments - from sensing enabled implantable devices to combined electrocorticography and LFP recordings during adaptive DBS.


Assuntos
Estimulação Encefálica Profunda , Transtornos dos Movimentos , Gânglios da Base , Eletrocorticografia , Humanos , Neurofisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...